
q

JavaGenes and Condor: Cycle-Scavenging

Genetic Algorithms

A1 Globus, Veridian MRJ Technology Solutions, Inc. at NASA Ames Research Center

Eric Langhirt, Sterling Software, Inc. at NASA Ames Research Center

Miron Livny, University of Wisconsin

Ravishankar Ramamurthy, University of Wisconsin

Marvin Solomon, University of Wisconsin

Steve Traugott, Sterling Software, Inc. at NASA Ames Research Center

Abstract

A genetic algorithm code, JavaGenes, was written in Java and used to evolve pharmaceutical drug

molecules and digital circuits. JavaGenes was run under the Condor cycle-scavenging batch system

managing 100-170 desktop SGI workstations. Genetic algorithms mimic biological evolution by

evolving solutions to problems using crossover and mutation. While most genetic algorithms evolve

strings or trees, JavaGenes evolves graphs representing (currently) molecules and circuits. Java was

chosen as the implementation language because the genetic algorithm requires random splitting and

recombining of graphs, a complex data structure manipulation with ample opportunities for memory

leaks, loose pointers, out-of-bound indices, and other hard to find bugs. Java garbage-collection memory

management, lack of pointer arithmetic, and array-bounds index checking prevents these bugs from

occurring, substantially reducing development time. While a run-time performance penalty must be

paid, the only unacceptable performance we encountered was using standard Java serialization to

checkpoint and restart the code. This was fixed by a two-day implementation of custom checkpointing.

JavaGenes is minimally integrated with Condor; in other words, JavaGenes must do its own

checkpointing and I/O redirection. A prototype Java-aware version of Condor was developed using
standard Java serialization for checkpointing. For the prototype to be useful, standard Java serialization

must be significantly optimized. JavaGenes is approximately 8700 lines of code and a few thousand

JavaGenes jobs have been run. Most jobs ran for a few days. Results include proof that genetic

algorithms can evolve directed and undirected graphs, development of a novel crossover operator for

graphs, a paper in the journal Nanotechnology [Globus, et al. 1999], and another paper in preparation.

Introduction

This paper is a case study of running genetic algorithms written in Java under Condor. To understand the

experience and results, it is necessary to have some understanding of both genetic algorithms and

Condor. Since this paper is written for the Java Grande 2000 conference, we expect readers to

understand the Java programming language and run-time environment.

Genetic Algorithms

Genetic algorithms seek to mimic natural evolution's ability to produce highly functional objects.

Natural evolution produces organisms. Genetic algorithms produce sets of parameters, programs,

molecular designs, and many other structures. Genetic algorithms usually solve problems by:

I. Randomly generating a population of individual potential solutions.

2. For each new generation, repeatedly selecting parent individuals at random with

a bias towards better individuals and applying transmission operators to

produce children. Transmission operators include:

I. Crossover: each of _wo parents is divided into two parts and one part

each parent is combined into a child.

2. Mutation: a single "parent" is randomly modified to generate a child.

3. Reproduction: a single "parent" is copied into the new generation.

3. Continuing until an acceptable solution is found or exhaustion sets in.

from

A key issue is what constitutes "better individuals." This is determined by a "fitness function." The

fitness function takes individuals (strings, trees, or graphs) as input and returns a number representing
the fitness of that individual.

Genetic algorithms differ in their representation of solutions. Bit string representations were used in the

first genetic algorithms [Holland 1975], but arrays of floating point numbers, special symbols that

generate circuits [Lohn and Colombano 1998], robot commands [Xiao, et al. 1997], and many other

symbols may be found in the literature. Strings may be of fixed or variable length. Trees can also be
evolved [Koza 1992]. This is usually called genetic programming, because trees are particularly useful

for representing computer programs. Many molecules contain cycles, which chemists call rings, and

strings and trees don't contain cycles. Therefore, we took the unusual approach of evolving graphs.

Graphs are a set of vertices (for example, atoms) and a set of edges (for example, bonds), each of which

connects two vertices. In this paper, the term graph does not refer to a two dimensional image used for
data presentation. Figure 1 depicts crossover using strings, trees and graphs.

P'dgI_'ItS

point

Children

Figure 1: Crossover
Sa'ings Trees

Crossover can be applied to strings, trees, and _aphs. Note that only

graph crossover requires multiple break points and that recombination

must work on fragments with different numbers of broken edges.

Particularly with large multi-ring molecules, these complex data structure

manipulations are more error prone in C/C++_ORTRAN than in Java.

Gralphs

Evolving graphs involves randomly splitting arbitrary graphs, into two fragments and then recombining

fragments. Splitting a complex graph, such as morphine (figure 2) involves complex data structure

manipulations that can easily result in various bugs. Java was chosen as the implementation language to

minimize these problems.

Figure2: Morphine
O

O

N.,
O

JavaGeneshasbeenusedfor pharmaceuticaldruganddigital circuit design.Oneapproachto drug
designis to find moleculessimilar to gooddrugs.Ideally, acandidatereplacementdrug is sufficiently
similar to havethesamebeneficialeffectbut is differentenoughto avoidnegativesideeffects.Touse
JavaGenesfor similarity-baseddrug discoveryweneeda goodsimilarity measurethatcanscoreany
molecule.[Carhart,et al. 1985]definedsuchasimilarity measure,all-atom-pairs-shortest-path,and
searchedalargedatabasefor moleculessimilar to diazepam.We usea closelyrelatedsimilarity
techniqueto evolveapopulationof moleculestowardsa targetdrugmolecule.

For anexcellentreviewof geneticalgorithmsandrelated techniquesasof Spring 1997,see[Baeck
1997].

Condor

Genetic algorithms have the fortunate property of being embarrassingly parallel, because fitness

function evaluation is usually the most time-consuming step in the genetic algorithm and there is no

dependency between fitness function evaluations. Not only can many fitness function evaluations be

conducted in parallel, but since genetic algorithms are statistical, it is usually necessary to make many

runs to support a hypothesis. In our work, we usually run 31 jobs with the same input parameters, each

job differing only in the random number seed. This provides completely trivial 31 way parallelism.

Furthermore, we are usually running several experiments at the same time. Thus, it is not uncommon for

our project to run 100-200 jobs simultaneously. It's also quite easy to implement parallel fitness function

evaluation within a single job, although we haven't found that to be necessary yet.

Embarrassingly parallel programs are a natural match for Condor [Litzkow, et al. 1988]. Condor is a

software system that creates a High Throughput Computing environment by effectively harnessing the

power of a cluster of UNIX workstations on a network. Although Condor can manage a dedicated

cluster of workstations, a key appeal of Condor is its ability to effectively harness non-dedicated,

preexisting resources in a distributed ownership setting such as machines sitting on people's desks in

offices and labs. We ran JavaGenes on the NAS Condor pool. NAS is the primary NASA supercomputer

center [NAS]. Approximately 200 workstations, purchased and used for software development,

visualization, email, document preparation, etc., are available for batch processing during idle times.

The Condor daemons watch these 200 workstations. When a workstation has been idle for 2 hours, a job

from the batch queue is assigned to the workstation and will run until the workstation detects a

keystroke, mouse motion, or relatively high non-Condor CPU usage. At that point, the job will be

removed from the workstation and placed back on the batch queue. As mentioned before, it's not

uncommon to have a few hundred JavaGenes jobs in the queue.

Because a JavaGenes job running under Condor may be killed at any time, the job must save state

(checkpoint)periodically.Condorprovidesa genericcheckpoint/restartfacility, but for reasons
discussedbelow,wecouldnot usethis facility for JavaGenes.Checkpointingwasinitially implemented
usingstandardJavaserialization.Conceptually, this is relatively simple since the state of a genetic

algorithm is simpIy the current population. However, standard Java serialization turned out to be a

serious, but fixable, performance problem, as others have discovered [Wires and Xu 1999]. See the

section below on serialization performance.

Approach

JavaGenes was written in 100% pure Java, version 1.1. There were approximately 8670 lines of source,

not including the graph layout code (Jiggle) provided by Daniel Tunkelang [Tunkelang 1998]. The

graph layout code is used to arrange graph vertices in three dimensions for viewing. We will now

discuss the objects implemented in JavaGenes.

Objects

The nouns used to describe genetic algorithms all became classes, including the following:

• Population -- an array of Individuals.
• Individual -- an Evolvable and its fitness.

• Evolvable (nonstandard terminology) -- a data structure capable of being evolved by ChildMaker

objects. Currently, only Graph plus subclasses Molecule and DigitalLogicGraph are implemented,

but plans for arrays and trees exist.

• FitnessFunction -- these objects have a 'double evaluate(Evolvable)' method that implements the

desired fitness function. General purpose FitnessFunction subclasses included weighted sum (of

other FitnessFunctions) and MultiplyBy.

• Breeder (nonstandard terminology) -- a class with a 'Population breed(Population)' method that

evolves one population into another.

• ChildMaker (nonstandard terminology) -- these objects tell a Breeder how many parents they want

(two for crossover, one for mutation), then take an array of parents and produce an array of
children.

Another set of classes are responsible for creating, manipulating, and managing graphs:

• Graph, along with subclasses Molecule and DigitalLogicGraph.

• Vertex, along with subclasses Atom, Digitallnput, DigitalOutput, and DigitalDevice (or, and, xor,
etc.).

• Edge, along with subclasses Bond and DigitalWire.

• BrokenGraph -- responsible for a graph fragment after crossover splits a graph.

• BrokenEdge -- responsible for an edge broken during splitting.

• VertexProvider and EdgeProvider -- these classes are used during graph generation and mutation

to provide random vertices and edges of various types.

In addition, there are several convenience classes:

• Parameters, along with subclasses MoleculeParameters and DigitalLogicParameters. These objects

hold all the values that are typically varied from job to job; for example: population size,

maximumnumberof generations,fitnessfunction,etc.Most of theJavaGenesclassfiles arekept
in a jar file, but theparameterfiles arecompiledfor eachsetof jobs andplacedearlier in the
CLASSPATH.This provides a flexible mechanism (taking advantage of Java dynamic loading) to

set input parameters without writing an input file parser.

• InputTokenizer and OutputTokenizer -- these are used to save and restores state. They can read

and write integers, doubles, etc.

Free Code

A certain amount of Java code is available for free on the Web. We took advantage of this in two cases.

First, the Student T-Test code used in the statistics class was supplied by NWP Associates, Inc. This was

a minor, but helpful, convenience. Second, and more important, one must examine the evolved graphs to

understand the results. To examine a graph, it must be laid out in two or three dimensions for viewing.

In other words, xyz locations for each vertex must be chosen. The graph layout problem is non-trivial. In

fact, it is very difficult. Fortunately, Daniel Tunkelang made his Jiggle Java code [Tunkelang 1998]

available, and Jiggle has done an excellent job of laying out graphs evolved by JavaGenes. Integration

of the two packages was quick and easy. Only one bug was found in Jiggle (1615 lines of source). That

bug was an infinite loop, which was found and fixed in a little over an hour.

Development Environment

JavaGenes was developed on a Compaq laptop running Windows 95. Windows was used because the

main developer cannot type for significant lengths of time and uses a voice recognition system. The first

development environment was Visual Cafe. This was abandoned because the debugger was quite buggy.

The second development environment was Superseed. Various problems required periodic

re-installation, which in turn caused serious problems with Windows 95. Finally, Borland JBuilder was

tried and there have been relatively few problems. CodeWarrior was used occasionally for specific

debugging problems. Although some compilers are a bit pickier than others about syntax, no significant

problems were encountered moving the code from one development environment to another; or moving

the source or class files to the SGI version of the JDK to run experiments.

Condor Support for Java

Condor runs each job in an environment called a "universe." The two most important universes are

called "Standard" and "Vanilla." Standard jobs are programs that have been linked with a special Condor

version of the C runtime library that mimics the effects of most Unix system calls and adds two kinds of

enhanced functionality: remote system calls and checkpointing.

Remote system calls provide a uniform environment to a job running on any workstation on a network.

The Condor runtime library replaces system calls with remote procedure calls to a shadow process

running on the workstation that submitted the job. The shadow makes the system call on behalf of the

remote process and returns the results. For example, the open system call sends the name of the desired

file to the shadow, which searches for it on the submitter's home workstation. Subsequent read and

write calls access that file over the network. The result is that the job sees the same file-system

environment regardless of where it runs, and all file output is captured in files on the submitting
workstation.

Checkpointing is also implemented by the Condor runtime library. Each Condor job is run under the

control of a starterprocess.Whena workstationneedsto beappropriatedfor anotherpurpose,thestarter
sendsaterminatesignalto theapplicationprocess.TheCondorlibrary catchesthis signalandsendsa
completedumpof thestateof theprocessbackto thesubmittingmachine,whereit awaitsits turnto be
restartedon anotherworkermachine.This checkpointfile includesabinary dumpof theentirevirtual
memoryimageof theprocess.It alsoincludesarecord(collectedby theremotesystemcalls)of thethe
currentstateof theprocess'interactionwith theoperatingsystemkernel.For example,for eachfile
openedby thejob, thecheckpointfile recordsthenameof thefile andthecurrentoffsetwithin the file
(the"seekpointer"). Condor can also be instructed to send a "checkpoint" signal to the starter at

periodical intervals. The starter responds to this signal by suspending the application, checkpointing it,

and then allowing it to continue. Under some circumstances, Condor may send other signals to the

starter, asking it to suspend the application, resume it, or kill it without giving it a chance to checkpoint.

Neither remote system calls nor checkpointing require any source-level modifications to the application

program, but they do require it to be re-linked with a special version of the system libraries. They also

impose some restrictions on the set of system services available to the job. In particular, Condor does

not currently support Standard jobs that use kernel-level threads. Programs that cannot be re-linked or

that do not meet these requirements must be run in the Vanilla universe. An arbitrary executable

program can be run as a Vanilla job, but any I/0 operations will access the file system of whatever

machine the job happens to be running on, and if the workstation is pre-empted (for example, by an

interactive user), the job is simply killed and restarted from the beginning on another workstation. At

NAS, in general, Condor jobs do not have permission to use the local disk on the worker workstation.

Most of the JavaGenes runs described in this paper used the Vanilla universe. The Java Virtual Machine

(JVM) from Sun Microsystems was available to us only in binary (pre-linked) form. We tried the Kaffe

open-source JVM, but found that it had bugs that prevented us from running JavaGenes correctly for

more than a few generations. Moreover, both JVM's use certain facilities -- notably kernel-level threads

-- that are not supported in Condor Standard jobs. Fortunately, the remote system call facility was not

necessary in our environment, since we use the Network File System (NFS), which provides a uniform

interface to files from all workstations. In this environment, the "job" submitted to Condor is a tcl script

that calls the JVM, with the name of the application class supplied as a command-line argument. From

the point of view of the JVM, the class files that comprise the application are simply data files that

appear to be on the local disk of the worker machine through the magic of NFS. Similarly, NFS is used

to create output files on the submitting workstation.

The lack of automatic checkpointing was a more serious problem. As mentioned earlier, we tried two

different application-specific checkpointing strategies. Both involved periodically invoking a checkpoint

method that saves the state of the computation into a file. JavaGenes invokes this method when it is

relatively quiescent so that all relevant state is concentrated in a few objects. If a workstation is

preempted before the program finishes, it is killed and restarted "from the beginning." However, at

startup, jobs Iook for the checkpoint file (via NFS) so they can initialize state and continue from the last

checkpoint. Thus, a job that is killed and restarted loses only the work it did between its most recent

checkpoint an the time when it was killed.

To provide better support for JavaGenes and other Java Grande applications, the Condor project has

been developing a Java universe. To run under this

universe, a Java program must implement the Checkpointable interface:

public interface Checkpointable extends Serializable {

void start(String[] arguments);
void restart();
void beforeCheckpoin_();
void af=erCheckpoin=_);
void se=Checkpointer{Checkpoin_er c);

Each universe has its own kind of starter. The starter for the Java universe is written in Java and extends

java. lang. ClassLoader. A "job" in the Java universe is a class file. We assume that each worker

machine has a JVM installed locally, but otherwise do not require any network file system or uniform

file environment. The Java starter loads all required classes over the network by communicating with a

Java version of the shadow using a Java RMI (Remote Method Invocation) interface. It creates an

instance prog of the application program class and calls either its prog. start or prog. restart,

depending on whether there is an existing checkpoint file from an earlier run of this job. The starter also

creates an instance cp of a Checkpointer object, passing prog to its constructor, and calling
prog. setCheckpointer (cp) SO that prog and cp can refer to each other. When the starter receives a

terminate or checkpoint signal, it calls cp. checkpointWhenPossible, which sets a flag indicating that a

checkpoint has been requested. It does not force an immediate checkpoint because the application object

may not be in a "quiescent" state in which checkpointing is convenient. The application itself is expected

to call cp. ok periodically. If no checkpoint has been requested, this method simply returns without

doing anything. However, if a checkpoint request is pending, the checkpointer uses Java serialization to

save the state of the object by calling write0bject (prog). It also calls prog. beforeCheckpoint

before the checkpoint and prog. afterCheckpoint after.

The writeObj ect method saves all of the non-transient fields of the object, as well as all objects pointed

to by those fields, all fields of those objects, etc. It does not, however, save anything from the runtime

stack -- that is, the values of local variables. It is the responsibility of the application to update the

non-transient fields of the application object to reflect the complete state of the application either before

calling cp. ok or in the method beforeCheckpoint. If these updates are costly, they should be in

beforeCheckpoint because this method is only called if the checkpoint is actually performed. The

beforeCheckpoint and afterCheckpoint methods also provide hooks for application-specific

performance monitoring, such as determining the amount of time spent checkpointing. A typical

application might look like this:

class Application

private

private

private

private

private

private

implements Checkpointable {

Checkpointer checkpoint;

GlobalState state;

int lastStepCompleted;

transient Vector intermediateResults;

int iterations; // set by initializeState

PerformanceS_atistics statistics;

public void setCheckpointer(Checkpointer checkpoint)

this.checkpoint = checkpoint;

}

public void start(String[] args) [

state.initialize(args);

inte._mediateResu!ts = new Vector();

iterateFrom(0);

}

public void restart() (

iterateFrom(lastStepCompleted);

}

private void izerateFrom(int start) {

for (int i = start; i < iterations; i++) {

intermediateResults.add(oneStepOfAlgorithm());

lastStepComp!eted = i;

checkpoint.ok();

}

prin_Resu!zs();

public void beforeCheckpoint() {

statistics.startTimer();

state.update(intermediateResults):

intermediateResults.clear();

}

public void afterCheckpoint() {

statistics.stopTimer();

)

// Methods initializeState, oneStepOfAlgorithm,

// startTimer, etc. omitted for brevity.

The Java universe provides several advantages over the Vanilla universe for Java applications:

• It supports remote system calls, so that it does not depend on the availability of a network file

system (and uniform conventions for mount points).

• It automates more of the tasks necessary for checkpointing and recovery.

• It allows Condor to decide when to checkpoint a job, only requiring the application code to

indicate when a checkpoint is safe.

• It allows a job to migrate among hardware platforms during its lifetime. A job in the Java universe

is comprised of class files and a checkpoint file, all of which are platform-independent.

A prototype version of the Java universe successfully ran JavaGenes but it was not stable enough for

production use at the time the experiments described in this paper were run. Also, the Java universe uses
Java serialization to checkpoint jobs. Our experience indicates that standard Java serialization is too

slow for JavaGenes to use.

Results

The bottom line for JavaGenes on Condor was to run many jobs to conduct the experiments necessary to

understand the application of genetic algorithms to graphs. In this, we were successful. Thousands of

jobs were successfully run, one genetic algoriths paper was published [Globus, et al. 1999], and another

is in preparation [Globus, et al. 2000]. JavaGenes does a fairly good job of evolving pharmaceutical

drug molecules, but can only evolve trivial circuits so far. We now examine the difficulties and benefits

of using Java for our application.

Java Con

Java Serialization Performance

It was eventually discovered that creating serialization files and reading them to implement

checkpoint/restart could take has much as three hours wall clock time. Although Java serialization is

extremely general-purpose, any objects can be serialized and the format is CPU independent, it is

difficult to understand why three hours is needed to serialize a few hundred graphs, some ancillary

objects, and a few thousand real numbers (the data). In any case, jobs, under these conditions, made no

progress. In addition, the serialization files were around 25 MB and there were often two files per job.

Because jobs could be interrupted in the middle of serialization, JavaGenes wrote state information into

a temporary file and, when finished, moved it to the permanent location. With long serialization times,

most jobs were interrupted in the middle of writing the serialization file. Thus, the full checkpoint file

and a partial checkpoint file were on disk most of the time. With hundreds of jobs, disk usage became

substantial. To solve the performance problem, Java serialization was abandoned and new code written

to save the state of the computation and read it back from disk. Development took approximately two

days and one bug was found and fixed a few days after development was "complete." Most checkpoint

files are now less than 1 MB. Checkpoint write and read usually take around 10 seconds, but can require

up to about five minutes (including network delays). This was the only performance problem that

required changes to the code.

Checkpointing with Serialization

Besides having performance problems, checkpointing with serialization must be handled with care. In

particular, it is sometimes error prone. It is necessary to make sure that all of the necessary program state

is saved. In the case of genetic algorithms, nearly all the state that must be saved is contained in the

population. However, if checkpointing is allowed in the middle of constructing a new generation, then
the loop index indicating how much of the next generation has been constructed must also be saved.

Also, it is difficult to write code that can be interrupted at any time and saved to disk. Therefore,

checkpointing is restricted to those points in the code where analysis can prove that saving and restoring

will not cause problems.

One other fairly serious problem arose. In the initial implementation, JavaGenes started a new random

number generator after restart. Because of this, evolution did not follow the same path taken after the

last checkpoint. In other words, the genetic algorithm was controlled by different random numbers and

therefore searched a different part of the search space. That made the algorithm appear more efficient

than it was, because the number of generations to find a specific target was used as the efficiency

measure. Consider the case where a job ran for 100 generations up to a checkpoint and 20 more

generations before being killed. When the job was restarted, twenty different generations would be

constructed and one of the new generations, say the 10th, might find the target. Therefore, it would

appear as if the target was found in 110 generations, but actually 130 were necessary. It was therefore

necessary, at job restart time, to restart the random number generator with the same seed and then

execute the random number generator the number of times it was executed up to the last checkpoint.

This insured that a job followed the same evolutionary path regardless of checkpoint history.

JIT Essential

Some very simple tests indicated that jobs run under the SGI just-in-time compiler were approximately

20 timesfasterthanwhentheJ-ITwasdisabled.

Double Read/Write Java Libraries Bug

It was discovered that the standard Java libraries will write out certain double numbers in an ASCII form

that is not tolerated as input by the same libraries. In particular, system, out. write(.... * aDouble)
will write out values such as NaN and Infinity, but Double (String) will throw an exception if these

strings are passed as the argument.

Java Pro

Porting

We never had any problems porting the source or class files between Java environments.

Bugs

Compared to developing in C or C++, there were few bugs and they were easy to find and fix. Basically,

almost all the bugs were logic problems, most of which were found and fixed while single stepping

through the code with the graphical debuggers provided by the IDEs. The uncontrolled pointers, index

out of range, memory management, and similar bugs extremely common in the primary programmer's

20 year C and C++ development experience almost never occurred. These bugs are also, usually, quite

difficult to find. Reducing the number of bugs dramatically lowered development time, at least

subjectively.

Memory Management

Memory management was trivial. Only one bug was encountered when we neglected to create a new
xyz array in class vertex during cloning. Before the bug was fixed, after graph layout, all the atoms

ended out on a single point.

Performance

Other than the serialization problem, performance was not a major issue. This was, in part, because

Condor supplies us with lots of nearly free CPU cycles, but also because Java performance has been

reasonable (although certainly not exceptional).

In short, we were happy with Java for this application. While there is some run-time penalty, more rapid

code development and more reliable end-product software is well worth the extra CPU cycles. Since

cycles are always getting cheaper, and programmers and support staff seem to be getting more

expensive, we expect Java to do well in the coming years.

Future Work

The main task before JavaGenes is to incorporate more chemical knowledge into the fitness functions,

because JavaGenes usually evolves molecules that are not physiologically stable and that would be

difficult, or perhaps impossible, to synthesize. To support more Java applications under Condor and

morediverseenvironments,theprototypeCondorJavauniversedescribedin thesectiononCondor
Supportfor Javaneedsto bebroughtup to productionstatus.Theperformanceproblemwith Java
serializationneedsto besolvedmoregenerally,or applicationsmustreimplementserialization.An
alternativeapproachwould beto rebuild aJavaVirtual MachineasaStandarduniversejob. This
approachhastheadvantageof requiring lesshand-modificationof Javaapplications,but requires
resolutionof certaintechnicalandlicensingissues.

Acknowledgments

Many thanks to Daniel Tunkelang, formerly of Carnegie Mellon, for providing his graph layout code

[Tunkelang 1998]. Thanks to NWP Associates, Inc. for providing their Student T-Test code. Thanks to

Rich McClellan, University of California at Santa Cruz, for providing the mol file reading and atomic

element code. Thanks to Gail Felchle for much of the graphics art work. Thanks to the Condor team at

the University of Wisconsin for their support. This work was funded by NASA Ames contract NAS

2-14303 and NASA-Ames Cooperative Agreement No. NCC 2-5323.

References

[Baeck, et al. 1997] Thomas Baeck, Ulrich Hammel, and Hans-Paul Schwefel, "Evolutionary

Computation: Comments on the History and Current State," IEEE Transactions on Evolutionary

Computation, volume 1, number 1, pages 3-17, April 1997.

[Carhart, et al. 1985] Raymond Carhart, Dennis H. Smith, and R. Venkataraghavan, "Atom Pairs as

Molecular Features in Structure-Activity Studies: Definition and Application," Journal of Chemical

Information and Computer Science, volume 23, pages 64-73.

[Globus, et al. 1999] AI Globus, John Lawton, and Todd Wipke, "Automatic Molecular Design Using

Evolutionary Techniques," Sixth Foresight Conference on Molecular Nanotechnology, Sunnyvale,
California, November 1998 and Nanotechnology, volume 10, number 3, September 1999, pages

290-299.

[Globus, et al. 2000] A1 Globus, Sean Atsatt, John Lawton, and Todd Wipke, "JavaGenes: Evolving

Graphs with Crossover," in preparation.

[Holland 1975] John H. Holland, Adaptation in Natural and Artificial Systems, University of Michigan
Press.

[Koza 1992] John R. Koza, Genetic Programming: on the Programming of Computers by Means of

Natural Selection, MIT Press, Massachusetts.

[Litzkow, et al. 1988] M. Litzkow, M. Livny, and M. W. Mutka, "Condor - a Hunter of Idle

Workstation," Proceedings of the 8th International Conference of Distributed Computing Systems,

pages 104-111, June 1988. See http://www.cs.wisc.edu/condorl.

[Lohn and Colombano 1998] Jason D. Lohn and Silvano P. Colombano, "Automated Analog Circuit

Synthesis Using a Linear Representation," Second International Conference on Evolvable Systems:

From Biology to Hardware, Springer-Verlag, 23-25 September 1998.

[NAS] http://www.nas.nasa.gov/home.html.

[Tunkelang1998]Daniel Tunkelang, A NumericalOptimizationApproachto GraphDrawing,
Dissertation,CarnegieMellon University,Schoolof ComputerScience,December1998.

[Wims andXu 1999]Brian Wims andCheng-ZhongXu, "Traveler:A Mobile AgentInfrastructurefor
WideAreaParallelComputing,"ACM 1999JavaGrandeConference,SanFrancisco,California, 12-14
June1999.

[Xiao,et al. 1997]JiangXiao, Zbigniew Michalewicz,Lixin Zhang,andKrzysztofTrojanowski,
"AdaptiveEvolutionaryPlanner/Navigatorfor Mobile Robots,"1EEE Transactions on Evolutionary

Computation, volume 1, number 1, pages 18-28, April 1997.

